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Abstract. Theoretical and numerical investigations are carried out for the amplitude modulation of dust-
ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized
plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an
angle θ) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear
Schrödinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle
θ, the dust concentration and the ion temperature. It is found that the ion temperature may strongly
modify the wave’s stability profile, in qualitative agreement with previous results, obtained for an electron-
ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope
solitons) is also discussed.

PACS. 52.27.Lw Dusty or complex plasmas; plasma crystals – 52.35.Fp Electrostatic waves and oscil-
lations (e.g., ion-acoustic waves) – 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other
interactions (including parametric effects, mode coupling, ponderomotive effects, etc.) – 52.35.Sb Solitons;
BGK modes

1 Introduction

In the recent few years, dusty plasmas (DP) have at-
tracted increasing attention due to a realm of new phe-
nomena associated to them and the exciting novel physics
involved in their description [1]. Of particular interest
was the theoretical prediction [2,3] and subsequent ex-
perimental confirmation [4–6] of the existence of new DP
oscillatory modes, namely the dust-acoustic wave (DAW)
and the dust-ion acoustic wave (DIAW) [1,7]. The lat-
ter, which is the object of this study, relies on a physical
mechanism quite analogous to that of the ion acoustic
wave (IAW): inertialess thermalized electrons provide the
restoring force, while massive ions provide the inertia. The
DIAW is characterized by a phase velocity which is much
smaller (larger) than the ion (electron) thermal speed,
and a frequency which is higher than the dust plasma
frequency ωp,d; therefore, on the timescale of relevance,
stationary dust does not participate in the wave dynam-
ics. In fact, the DIAW phase velocity is higher than that
of IA waves, because of the electron density depletion in
the background plasma when dust grains are negatively
charged; remarkably, this fact results in suppression of the
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Landau damping mechanism [1], which is known to prevail
over the IAW propagation in an electron-ion plasma [8,9].

Wave propagation in a nonlinear medium like plasma
is generically subject to amplitude modulation due to
the carrier wave self-interaction, related to the harmonic
generation. The standard reductive perturbation tech-
nique [10,11] used to study this mechanism, leads to a non-
linear Schrödinger-type equation (NLSE), which describes
the evolution of the carrier wave envelope. Modulated
waves may develop a Benjamin-Feir-type (modulational)
instability (MI), i.e. envelope collapses when subjected to
external perturbations, a mechanism which often favors
energy localization via the formation of envelope localized
structures (envelope solitons), as is known from a variety
of physical contexts [12–15]. These long-lived localized ex-
citations are sustained by a mutual compensation of dis-
persion and nonlinearity and can propagate in the medium
over long distances, remarkably surviving impacts with
each other.

Plasma electrostatic modes have been widely studied
in this respect [10,11,16–24]. In a rather general fash-
ion [25], these studies have revealed the existence of a
(carrier wavenumber) instability threshold, which is found
to change once oblique modulation [19–21] or temper-
ature effects [22–24] are taken into account. As far as
DP electrostatic modes are concerned, studies of both
DAW [26,27] and DIAW [26,29,30] have been carried out,
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followed by similar investigations of (strongly-coupled) DP
lattice modes [31,32]. However, all known studies of DIAW
modulation are limited to a cold-ion description, where
the ion pressure effect is omitted, for simplicity. This fact
may favor analytical tractability, but overlooks the inter-
esting ion temperature effects known from the IAW case
(in an electron-ion plasma), since experiments on the IAW
instability [35] and on the IA/DIA solitary wave forma-
tion [36–38] have revealed important sensitivity to the ion
temperature.

In this paper, we aim in generalizing previous re-
sults [30] by studying the modulational instability of dust-
ion acoustic waves propagating in an unmagnetized fully
ionized dusty plasma consisting of warm ions, Boltzmann
distributed electrons and massive charged dust grains,
whose dimensions and charge are assumed to be constant,
for simplicity. Amplitude modulation is allowed to take
place in an oblique direction, at an angle θ with respect to
the carrier wave propagation direction. Our aim is multi-
fold. Once the conditions for instability to occur are estab-
lished, we aim in examining their dependence on physical
parameters as the angle θ, the dust number density nd and
(focusing on) the ion temperature Ti. Finally, the possi-
bility of the formation of envelope solitary waves will be
addressed.

2 The formalism

We consider a three component collisionless unmagnetized
dusty plasma consisting of electrons (mass m, charge e),
ions (mass mi, charge qi = +Zie) and heavy dust partic-
ulates (mass md, charge qd = sZde), henceforth denoted
by e, i, d respectively. The inertial (heavy) dust particles
are assumed to be practically immobile (nd ≈ nd,0) since
the DIA wave is characterized by timescales much shorter
than the dust plasma period (∼ ω−1

p,d) [1]. Dust mass and
charge will be taken to be constant, for simplicity. Note
that both negative and positive dust charge cases are con-
sidered, distinguished by the charge sign s = sgn qd = ±1.

2.1 Model equations

The system of (reduced) moment-Poisson evolution equa-
tions for the ions reads

∂n

∂t
+ ∇ · (nu) = 0,

∂u
∂t

+ u · ∇u = −∇φ− σ

n
∇p,

∂p

dt
+ u · ∇p = −γp∇ · u,

where all quantities are dimensionless: n, u and p, re-
spectively, denote the (normalized) dust density nd/ni,0,
mean velocity ud/cs = [mi/(kBTe)]1/2ud and pressure
pi/(ni,0kBTi); γ = (f + 2)/f is the ratio of specific heats
(f is the number of degrees of freedom) e.g. γ = 3 in the
adiabatic one-dimensional (1d) case and γ = 5/3 in three

dimensions; space and time are, respectively, scaled over
the electron Debye radius λD,e = (kBTe/4πne,0e2)1/2,
and t0 = λD,e/cs ≡ ω−1

p,e(mi/me), where ωp,e denotes
the electron plasma frequency ωp,e = (4πne,0e2/me)1/2.
The (reduced) electric potential φ = ZieΦ/(kBTe) obeys
Poisson’s equation: ∇2Φ = −4π

∑
qαnα, which here takes

the form

∇2φ = φ+ αφ2 + α′φ3 − β(n− 1), (1)

by linearizing around a Boltzmann state assumed for
electrons, i.e. ne ≈ ne,0e

eΦ/kBTe (Tα is the temper-
ature of species α = e, i; kB is the Boltzmann con-
stant). The dimensionless parameters are conveniently ex-
pressed in terms of typical dust parameters, i.e. either
the ratio µ = ne,0/(Zini,0) or δ = (Zdnd,0)/(Zini,0).
One has: α = 1/(2Zi), α′ = 2α2/3 = 1/(6Z2

i ) and
β = Z2

i ni,0/ne,0 ≡ 1/(2αµ) = Zi/µ. Since overall neutral-
ity is assumed at equilibrium: ne,0 −Zini,0 − sZdnd,0 = 0,
one has µ = 1+sδ, so that 0 ≤ µ < 1 (µ > 1) corresponds
to negative (positive) dust charge; obviously, µ = 1 (as
δ = 0) in the absence of dust (previous results for the ion-
acoustic wave in an electron-ion plasma are recovered in
this limit) [33]. Finally, σ denotes the temperature ratio
Ti/Te; taking σ → 0 one recovers the “cold ion” DIAW
model used previously [26,30].

2.2 Multiple scales perturbation method

Let S be the state (column) vector (n,u, p, φ)T , describing
the system’s state at a given position r and instant t. We
shall consider small deviations from the equilibrium state
S(0) = (1,0, 1, 0)T by taking S = S(0)+εS(1)+ε2S(2)+... =
S(0) +

∑∞
n=1 ε

nS(n), where ε � 1 is a smallness parame-
ter. Following the standard multiple scale (reductive per-
turbation) technique [10], we shall consider the stretched
(slow) space and time variables ζ = ε(x − V t), τ = ε2t
(V ∈ 	). The perturbed states are assumed to depend
on the fast scales via the carrier phase θ1 = k · r − ωt,
while the slow scales enter the argument of the jth el-
ement’s lth harmonic amplitude S

(n)
j,l , allowed to vary

along x, viz. Sj(n) =
∑∞
l=−∞ S

(n)
j,l (ζ, τ)eil(k·r−ωt) (where

S
(n)
j,−l = S

(n)
j,l

∗
). The amplitude modulation (along the x-

axis) is thus allowed to take place in an oblique direction,
with respect to the (arbitrary) propagation direction; ac-
cordingly, the wavenumber k is (kx, ky) = (k cos θ, k sin θ).
Treating the derivative operators as

∂

∂t
→ ∂

∂t
− εV

∂

∂ζ
+ ε2

∂

∂τ
,

∇ → ∇ + εx̂
∂

∂ζ
,

∇2 → ∇2 + 2ε
∂2

∂x∂ζ
+ ε2

∂2

∂ζ2
,

and substituting into the system of evolution equations,
one obtains an infinite series in both (perturbation order)
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Q0 = +
1

2ω

1

β2

1

(1 + k2)2
1

β + γσ − v2
g

{
βk2

[
β
[
3 + 6k2 + 4k4 + k6 − 2αβ

(
2k2 + 3 − 2αv2

g

)]

+ γσ
[
(γ + 1)(1 + k2)3 − 2αβ

(
2αβ + γ(1 + k2)2

)]
+

[
β(2 + 4k2 + 3k4 + k6 − 2αβ) + 2γσ(1 + k2)2(1 + k2 − αβ)

]
cos 2θ

]

+ 2(1 + k2)4(β + γσ)ω2 cos2 θ + k(1 + k2)

[
βk2 + ω2(1 + k2)

]
vg

ω

[
β(1 + k2 − 2αβ) + γ(γ − 1)σ(1 + k2)2

]
cos θ

}
, (6)

Q1 =
3α′β
2ω

k2

(1 + k2)2
, (7)

Q2 = − 1

12β3

1

ω

1

k2(1 + k2)2

{
2βk2

[
−5αβ2(1 + k2)2 + 2α2β3 + 2γ2σ(1 + k2)4(1 + 4k2)

+ β(1 + k2)3(3 + 9k2 − 2αγ2σ)

]
+ (1 + k2)3ω2

[
β(3 + 9k2 + 6k4 − 2αβ) + 2γ2σ(1 + k2)2(1 + 4k2)

]}
(8)

εn and (phase harmonic) l. The standard perturbation
procedure now consists in solving in successive orders ∼εn
and substituting in subsequent orders. The calculation,
particularly lengthy yet perfectly straightforward, follows
exactly the method we have reported elsewhere [28,30],
so only the essential steps are provided here. The (n =
2, l = 1) equations determine the first harmonics of the
perturbation

n
(1)
1 =

1 + k2

β
φ

(1)
1 =

1
γ
p
(1)
1 =

1
ω

k · u(1)
1

=
k

ω cos θ
u

(1)
1,x =

k

ω sin θ
u

(1)
1,y (2)

and provides the compatibility condition: ω2 = βk2/(k2 +
1)+γσk2, which exactly recovers, by restoring dimensions,
the known DIAW dispersion relation [1,7]:

ω2 =
c2Dk

2

1 + k2λD
2 + γv2

thk
2. (3)

Proceeding in the same manner, we obtain the second or-
der quantities, namely the amplitudes of the second har-
monics S(2)

2 and constant (“direct current”) terms S(2)
0 ,

as well as a finite contribution S(2)
1 to the first harmon-

ics; the lengthy expressions are omitted here for brevity.
The (n = 2, l = 1) equations provide the compatibility
condition:

V =vg(k)=
∂ω

∂kx
=ω′(k) cos θ=

k

ω

[
1

(1 + k2)2
+ γσ

]
cos θ;

V is, therefore, the group velocity in the modulation (x-)
direction.

2.3 Derivation of the nonlinear Schrödinger equation

Proceeding to order ∼ ε3, the equations for l = 1 yield an
explicit compatibility condition in the form of the nonlin-
ear Schrödinger equation (NLSE)

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q|ψ|2ψ = 0 (4)

describing the evolution of the potential perturbation ψ ≡
φ

(1)
1 . The “slow” variables {ζ, τ} were defined above.

The dispersion coefficient P is related to the curva-
ture of the dispersion curve as P = (1/2)(∂2ω/∂k2

x) =
(1/2)

[
ω′′(k) cos2 θ + ω′(k)(sin2 θ)/k

]
; the exact form of P

reads

P (k) =
1
β

1
2ω

(
ω

k

)4[
ν1 −

(
ν1 + 3

ν2
β
ω2

)
cos2 θ

]
, (5)

where we have defined:

ν1 = β
β + σγ(1 + k2)2

[β + σγ(1 + k2)]2

and

ν2 = β3 3β + γσ(3 − k2)(1 + k2)
3[β + γσ(1 + k2)]4

(see that ν1,2 → 1 when σ → 0, recovering the previous
cold ion-model result [30]).

The nonlinearity coefficient Q is due to carrier wave
self-interaction. Distinguishing different contributions, Q
can be split into five distinct parts, viz. Q =

∑4
j=0Qj ,

where Q0/2 is due to the zeroth/second order harmonics
and Q1 is related to the cubic term in (1):

see equations (6–8) above

while Q3,4 (too lengthy to report here) are related to ion
pressure via σ (and cancel in the “cold-ion” model, i.e. for
σ = 0). In fact, Q1,2 are isotropic, while Q0,3,4 depend on
the angle θ.

Notice the influence on the form (and the sign) of co-
efficients P and Q of: (a) the modulation angle θ (as com-
pared to the parallel DIAW modulation case; cf. Ref. [24]),
(b) the dust component density nd via β defined above (as
compared to the IAW case in an electron-ion plasma; cf.
Refs. [16,19]) and (c) the ion temperature via σ (as com-
pared to the cold-ion DP models; cf. Refs. [26,30]). The
role of the former two was exhaustively investigated in
reference [30] — so those results will not be reproduced
here — while the latter effect (temperature) will be stud-
ied in the remaining part of the paper. One may readily
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check, after a tedious yet straightforward calculation, that
expressions (6) and (8) reproduce (53) and (54) in refer-
ence [26], upon setting σ = 0. However, the remaining
coefficient Q1, defined by (7), was absent therein, and yet
seems to yield a rather non-negligible influence on the nu-
merical value of Q.

An interesting result is obtained by considering the
vanishing k � 1 (continuum) limit in the above formulae.
As a matter of fact, both P and Q, given by

P
∣∣
θ=0

≈ −3
2

β√
β + γσ

k

and

Q
∣∣
θ=0

≈ +
1

12β3

1√
β + γσ

[
β(3 − 2αβ) + 2γσ

]
× [

β(3 − 2αβ) + γ(γ + 1)σ
]1
k

for θ = 0, change sign as oblique modulation is ‘switched
on’:

P
∣∣
θ �=0

≈
√
β + γσ

2k
sin2 θ

and

Q
∣∣
θ �=0

≈ − 1
12β3

1√
β + γσ

[
β(3 − 2αβ) + 2γ2σ

]
× [

β(3 − 2αβ) + γ(γ + 1)σ
]1
k
.

One may check that the product PQ remains negative for
small k, ensuring, as we shall see in the following, stability
for long wavelengths λ� λD.

In conclusion, both coefficients P and Q may change
sign when “switching on” theta. Obliqueness in modula-
tion therefore affects the stability profile of the system,
which confirms the general qualitative arguments put for-
ward in reference [19] for the ion-acoustic wave in an
electron-ion plasma (without dust). Nevertheless, at all
cases, the product of P and Q is negative for small k,
ensuring, as we shall see, stability for long carrier wave-
lengths. This qualitative remark, which remains true for
any value of β (i.e. regardless of the concentration of the
dust component) is in complete agreement with previous
results in the ion-acoustic wave case (with no dust): see
e.g. equation (41) in reference [16]; notice, in passing, that
the result Q ∼ 1/k obtained therein is also recovered
here [34].

3 Stability analysis

The NLSE (4) is known to possess the monochromatic
(Stokes wave) solution: ψ = ψ̂eiQ|ψ̂|2τ + c.c. We may con-
sider small perturbations by setting ψ̂ = ψ̂0 + εψ̂1, and
then take ψ̂1 to be of the form: ψ̂1 = ψ̂1,0e

i(k̂ζ−ω̂τ) +
c.c. (the perturbation wavenumber k̂ and frequency ω̂
should be distinguished from the carrier wave quantities,

(a)

(b)

Fig. 1. The PQ = 0 curve is represented against normalized
wavenumber k/kD (horizontal axis) and angle θ (vertical axis);
the area in black (white) represents the region in the (k − θ)
plane where the product is negative (positive), i.e. where the
wave is stable (unstable). This plot refers to the dust-free case
(δ = 0 i.e. µ = 1). (a) σ = 0 (cold ions); (b) σ = 0.05 (warm
ions).

k and ω). Now, substituting into (4), we readily obtain
the perturbation dispersion relation

ω̂2 = P 2k̂2

(
k̂2 − 2

Q

P
|ψ̂0|2

)
.

The wave will be stable for all values of k̂ if the prod-
uct PQ is negative. However, for positive PQ > 0, in-
stability sets in for wavenumbers below a critical value
k̂cr =

√
2Q/P |ψ̂0|, i.e. for wavelengths above a thresh-

old: λcr = 2π/k̂cr; defining the instability growth rate
σ = |Imω̂(k̂)|, we see that it reaches its maximum value
for k̂ = k̂cr/

√
2, viz. σmax = |Imω̂|k̂=k̂cr/

√
2 = |Q||ψ̂0|2. In

brief, we see that the instability condition depends only
on the sign of the product PQ, which can now be studied
numerically, relying on the exact expressions derived in
the preceding section.

In the contour plots presented below (see Figs. 1 to 3),
we have depicted the PQ = 0 boundary curve against
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(a)

(b)

Fig. 2. Similar to the previous figure, for negative dust charge;
we have taken a negative dust density: δ = qd,0/qi,0 = 0.5 i.e.
µ = 0.5 here.

the normalized wavenumber k/kD and angle θ (between
0 and π; notice the π/2-periodicity); the area in black
(white) represents the region in the (k − θ) plane where
the product is negative (positive) i.e. where the carrier
wave will be stable (unstable) to external perturbations.
We have taken Zi = 1 (implying: α = 1/2, α′ = 1/6 and
β = 1/µ), and then considered different values of µ and σ
in the plots.

For a given (fixed) value of angle θ, instability sets in
at some critical value of the wavenumber kcr,1; therefore,
waves characterized by a wavenumber lower than kcr,1 (or
wavelength higher than λcr,1 = 2π/kcr,1) will be stable.
For the sake of reference, note that the known values of
kcr,1 = 1.47kD in the absence of dust, and for parallel mod-
ulation (θ = 0) [17,18], is well recovered here. As antici-
pated, modulation obliqueness affects the stability profile
dramatically: as observed in the contour plots, and already
discussed in reference [30] for the cold-ion model (σ = 0),
kcr,1 becomes lower as θ increases from zero up to a certain
value (for instance, around 20 degrees in Fig. 1) and then
increases to infinity for higher θ (thus prescribing stability
to wide-angle modulation). On the other hand, the value
of kcr,1 is quite sensitive to changes in the dust concentra-

(a)

(b)

Fig. 3. Similar to the previous figures, for positive dust charge;
we have taken a positive dust density: δ = qd,0/qi,0 = 0.5 i.e.
µ = 1.5 here.

tion: the existence of negative (positive) dust shifts kcr,1
towards lower (higher) values, thus enhancing (impeding)
instability at long wavelengths; also see in reference [30]
for details.

As far as the effect of finite ion temperature is con-
cerned, we encounter the appearance of a second finite
threshold kcr,2 as σ is switched on (i.e. kcr,2 → ∞ for
σ → 0); very short wavelengths are therefore stable as
well. It should be pointed out that this result may be of
importance in dusty plasmas, as DP is known not to be
subject to Landau damping [1] (which restricts the validity
of results for short wavelengths), contrary to “ordinary”
(dust-free) an electron-ion plasma. As the ion tempera-
ture gradually increases, both thresholds kcr,1 and kcr,2 are
shifted and the instability region gradually shrinks; cf. Fig-
ures 1, 2, 3 (a to b); also see Figure 4. Notice, however, the
qualitatively different behaviour between negative dust
and positive dust: the existence of the former (qd < 0)
results in a slightly wider (as compared to the dust-free
case) region of instability, while the latter (qd > 0) does
exactly the opposite (yet the effect is less intense). Posi-
tive dust, therefore, seems to slightly enhance stability, in
agreement to results in reference [30]. In any case, the ion
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Fig. 4. The two critical wavenumber values kcr,1/kcr,2 are de-
picted (lower/upper solid line, triangles) against normalized
ion temperature σ = Ti/Te, for a dusty plasma with neg-
ative dust charge. The unstable region lies between the two
curves. The dust-free case kcr,1/kcr,2 thresholds (lower/upper
dot line, squares) is also depicted, for reference. (a) Negative
dust: δ = qd,0/qi,0 = 0.5 i.e. µ = 0.5; (b) positive dust: δ = 0.5
i.e. µ = 1.5. See that the addition of negative (positive) dust
results in a wider (narrower) instability region, which gets even
narrower with temperature, in both case.

temperature influences the stability profile quite strongly,
in qualitative agreement with experiments [35].

4 Envelope excitations

The NLS equation (4) is known to possess several types of
localized solutions (envelope solitons), representing prop-
agating constant profile perturbations of the carrier enve-
lope; these should be distinguished from non-topological
soliton solutions — pulses — or shocks, obtained for the
same physical system via a different formalism [39]). Fol-
lowing closely references [30,40,41], we shall only briefly
review the analytical form of solutions which are of rele-
vance to our problem (the different types of NLS solutions
are exhaustively reviewed, e.g. in Ref. [41]).

Seeking a solution to equation (4) in the form ψ(ζ, τ) =√
ρ(ζ, τ)eiΘ(ζ,τ), where ρ, σ are real variables to be deter-

mined, one obtains the following (envelope) solutions:

(a) the (bright) envelope soliton [42], for PQ > 0:

ρ = ρ0sech2

(
ζ − uτ

L

)
,

Θ =
1

2P

[
uζ −

(
Ω +

1
2
u2

)
τ

]
, (9)

representing a localized pulse travelling at a speed
u and oscillating at a frequency Ω (at rest). The
pulse width L depends on the (constant) maximum
amplitude square ρ0 as L =

√
2P/Qρ0. Note that

this solution, when the envelope width is close to
the carrier wavelength, is the continuum analogue of
the (discrete) “breather” modes studied in molecular
chains [43];

(b) the dark envelope soliton (hole) [42], for PQ < 0:

ρ = ρ1

[
1 − sech2

(
ζ − uτ

L′

)]

= ρ1 tanh2

(
ζ − uτ

L′

)
,

Θ =
1

2P

[
uζ −

(
1
2
u2 − 2PQρ1

)
τ

]
, (10)

representing a localized region of negative wave den-
sity (hole) travelling at a speed u; again, the pulse
width depends on the maximum amplitude square ρ1

via L′ =
√

2 |P/Qρ1|;
(c) the grey envelope solitary wave, also obtained for

PQ < 0 [41]:

ρ = ρ2

[
1 − a2sech2

(
ζ − uτ

L′′

)]
,

Θ =
1

2P

[
V0ζ −

(
1
2
V 2

0 − 2PQρ2

)
τ +Θ10

]

−S sin−1 a tanh
(
ζ−uτ
L′′

)
[
1 − a2sech2

(
ζ−uτ
L′′

)]1/2
, (11)

which also represents a localized region of negative
wave density; Θ10 is a constant phase; S denotes the
product S = signP × sign (u − V0). In comparison to
the dark soliton (10), note that apart from the maxi-
mum amplitude ρ2, which is now finite (i.e. non-zero)
everywhere, the pulse width of this grey-type excita-
tion: L′′ =

√
2 |P/Qρ2|/a, now also depends on a,

given by:

a2 = 1 +
1

2PQ
1
ρ2

(
u2 − V 2

0

) ≤ 1,

an independent parameter representing the modula-
tion depth (0 < a ≤ 1). V0 is an independent real
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Fig. 5. The P/Q ratio, whose absolute value/sign is related
to the (square) soliton width/type (see in the text), is plotted
against the wavenumber k, for parallel modulation (θ = 0).
This plot refers to the dust-free case (δ = 0 i.e. µ = 1). (a)
σ = 0 (cold ions); (b) σ = 0.05 (warm ions). Positive/negative
values correspond to BES/DES: bright/dark envelope solitary
waves.

constant which satisfies [41]: V0 − √
2|PQ|ρ2 ≤ u ≤

V0 +
√

2|PQ|ρ2 (for V0 = u, we have a = 1, and thus
recover the dark soliton above).

We see that the regions depicted in Figures 1–3 in fact
also distinguish the regions where different types of local-
ized solutions may exist: bright (dark or grey) solitons will
occur in white (black) regions. One immediately draws the
conclusion that the ion temperature may strongly affect
the type of solitary waves sustained in the system, e.g.
destabilizing bright-type modes (pulses) and favoring dark
ones (holes), or vice versa. Furthermore, the soliton char-
acteristics (width, amplitude) will depend on temperature
via (the appearance of σ in) the P and Q coefficients; for
instance, regions with higher values of P (or lower values
of Q) — see Figures 5 to 7 — will support wider (i.e.
spatially more extended) localized excitations. As a mat-
ter of fact, increasing the ion temperature has a multi-
fold effect: it destabilizes dark excitations at long wave-
lengths, in favor of bright ones, and it supports slightly
narrower excitations of either kind, while is also allows for
dark envelopes at high k (short wavelength); cf. e.g. Fig-
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Fig. 6. Similar to the previous figure, for negative dust charge;
we have taken a negative dust density: δ = qd,0/qi,0 = 0.5 i.e.
µ = 0.5 here.

ures 1a to 1b, and so forth. Also notice that, at a given
temperature, the addition of negative (positive) dust to
the plasma apparently results in higher (lower) values of
P/Q i.e. wider (narrower) envelope excitations, for a given
amplitude (see e.g. Figs. 5 to 7).

5 Conclusions

This work was dedicated to the study of the modulational
instability of dust-ion acoustic waves propagating in an
unmagnetized dusty plasma. Summarizing our results, we
have seen that

(i) obliqueness in modulation may strongly affect the
conditions for modulational instability to occur: re-
gions which are stable to parallel modulation may be-
come unstable when subject to oblique modulation,
and vice versa;

(ii) large-angle modulation seems to have a stabilizing
effect; on the contrary, small-to-medium angle mod-
ulation (for k between two critical values, depend-
ing on the dust concentration) enhances instability;
however, this is suppressed by taking into account
ion temperature, which appears to have a stabilizing
effect on short-wavelength DIA waves;
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Fig. 7. Similar to the previous two figures, for positive dust
charge; we have taken a positive dust density: δ = qd,0/qi,0 =
0.5 i.e. µ = 1.5 here.

(iii) DIAW-related localized envelope excitations (solitary
waves) may be formed and sustained in a dusty
plasma; stable (unstable) DIA wave regions in the
(k, θ) plane support envelope solitary waves of the
bright (dark or grey) type, for which explicit expres-
sions are known. Furthermore, the type and charac-
teristics of these localized modes depend strongly on
the ion temperature — which seems to favour dark-
type excitations (holes) — as well as the modulation
angle θ, dust concentration nd and dust sign s.

These results confirm and complete the qualitative
conclusions drawn from the cold-ion model [30]. Our aim
here was to suggest a fully three-dimensional model for
DIAW modulation in unmagnetized collisionless dusty
plasma which is generic, by incorporating features like
obliqueness in modulation, negative or positive dust
charge, arbitrary carrier wavelength λ (remember that
short λ electrostatic plasma waves are subject to Landau
damping and thus often excluded from the analysis; this
is not the case in DP) and finite ion temperature. How-
ever, we have assumed dust charge to be constant and
the plasma geometry was taken to be Cartesian and in-
finite, for simplicity. These effects may be included in a
forthcoming work.
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